Нейронные сети, какие бывают, принципы и алгоритм обучения

Нейросеть состоит из искусственных нейронов, которые соединяются между собой. У самой примитивной нейронной сети один слой нейронов, у более сложных — несколько. Часто каждый слой занимается своей задачей, например, один распознает, другой преобразует. Интересно то, что конкретные признаки, нужные для узнавания, неизвестны. Мы не можем точно сказать, почему понимаем, что кот — это кот, даже если он нарисован в необычном стиле и не похож на настоящего. Разработчики до конца не знают, какие именно признаки «запомнила» нейросеть, — поэтому даже работающий и протестированный программный продукт может выдавать ошибки.

Принцип действия нейронных сетей

Нейросети способны решать широкий спектр задач, и их можно адаптировать практически под любые обстоятельства. Из архитектуры и режима работы нейросети следует несколько особенностей, ключевых для понимания направления. Существующих на тот момент технологий было недостаточно, чтобы создать мощную систему.

Преимущества и недостатки нейросети

Радиальные веса на самом деле представляют точку, а радиальный порог – отклонение. Перед началом обучения сети весам и порогам случайным образом присваиваются небольшие по величине начальные значения. Тем самым отклики отдельных элементов сети имеют малый наклон и ориентированы хаотично – фактически они не связаны друг с другом. По мере того, как происходит обучение, поверхности отклика элементов сети вращаются и сдвигаются в нужное положение, а значения весов увеличиваются, поскольку они должны моделировать отдельные участки целевой поверхности отклика. Графики полиномов могут иметь различную форму, причем чем выше степень многочлена (и, тем самым, чем больше членов в него входит), тем более сложной может быть эта форма. Если у нас есть некоторые данные, мы можем поставить цель подогнать к ним полиномиальную кривую (модель) и получить таким образом объяснение для имеющейся зависимости.

Расположение центров должно соответствовать кластерам, реально присутствующим в исходных данных. Почти всегда более сложная сеть дает меньшую ошибку, но это может свидетельствовать не о хорошем качестве модели, а о переобучении. Для анализа нужно иметь порядка сотен или тысяч наблюдений; чем больше в задаче переменных, тем больше нужно иметь наблюдений. Пакет ST Neural Networks имеет средства для распознавания значимых переменных, поэтому включайте в рассмотрение переменные, в значимости которых Вы не уверены.

Задача

Наиболее важным показателем является стандартное отклонение ошибки прогноза. Если оно не окажется существенно меньше стандартного отклонения обучающих данных, это будет означать, что сеть работает не лучше, чем простая оценка по среднему. Далее, https://deveducation.com/ в пакете ST Neural Networks пользователю выдается отношение стандартного отклонения ошибки прогноза к стандартному отклонению обучающих данных. Если оно существенно меньше единицы (например, ниже 0.1), то это говорит о хорошем качестве регрессии.

  • Естественным является применение метода k-ближайших соседей (k-NN).
  • Eсли машина обнаружит, что она едет быстрее или медленнее требуемой скорости, нейронная сеть будет менять скорость, ускоряя или замедляя автомобиль.
  • Мы не можем точно сказать, почему понимаем, что кот — это кот, даже если он нарисован в необычном стиле и не похож на настоящего.
  • С точки зрения этого узла, непрерывная визуализация представлений, созданных нейронной сетью, это процедура распутывания связей.
  • Например, нейронные сети могут выполнять следующие задачи.
  • Именно поэтому нашей целью обычно являются как раз локальные минимумы.

Ранее мы говорили, что кривая потерь получается за счёт изменения параметров модели с сохранением фиксированного набора входных данных. Однако если начать изменять входные данные, выбирая различные данные в каждом мини-пакете, значения потерь и градиентов также будут меняться. Другими словами, изменяя набор входных данных, для каждого мини-пакета мы получим собственную кривую потерь, которая немного отличается от других. Большинство популярных библиотек глубокого обучения, например PyTorch и Keras, имеют множество встроенных оптимизаторов, базирующихся на использовании алгоритма градиентного спуска, например SGD, Adadelta, Adagrad, RMSProp, Adam и пр. Наше журнальное объяснение нейронной сети упрощено до предела, а структура давно устарела — ​таким машинное обучение было в 1960-е. Современным специалистам приходится иметь дело с десятками и сотнями всевозможных параметров, не только весами и количеством слоев.

Нейронная сеть и возможность ее обучения

Если на этой стадии вычислений производная меняет свой знак на противоположный, то это говорит о чересчур большом изменении и об упущении локального минимума. Следовательно, нужно возвратить весу предыдущее значение и уменьшить величину изменения. Если же знак остался прежним, то следует поднять величину изменения веса для максимальной сходимости. Здесь мы видим, что за те же 20 эпох сеть смогла достичь точности 93,93%, что значительно ниже, чем в предыдущем случае.

Числовые значения должны быть приведены в масштаб, подходящий для сети. В пакете ST Neural Networks реализованы алгоритмы минимакса и среднего/стандартного отклонения, которые автоматически находят масштабирующие параметры для преобразования числовых значений в нужный диапазон. Пусть, например, мы хотим научить нейронную сеть оценивать стоимость объектов недвижимости. Цена дома очень сильно зависит от того, в каком районе города он расположен. Город может быть подразделен на несколько десятков районов, имеющих собственные названия, и кажется естественным ввести для обозначения района переменную с номинальными значениями.

Как обучать нейронные сети?

В биологии подобные преобразования происходят уже на уровне сетчатки глаза, благодаря on-, off-клеткам, независимо от того, что проецируется на сетчатку глаза общая активность нерва идущего от глаза будет постоянна. По сути здесь класс цифры определяется некоторыми диапазонами активности двух нейронов. Эти диапазоны или области как нейросети что это такое мы видим на диаграмме, можно назвать некими эмбеддингами, представительствами классов внутри сети, которые сформировались в процессе самообучения. Генетический алгоритм обученияНесмотря на то, что нейронные сети в чем-то повторяют разум человека, нужно понимать, что это лишь искусственное его подобие, но не полноценный эквивалент.

Принцип действия нейронных сетей

Это полезно, если перед сетью стоит сложная задача вроде перевода текста. Однонаправленная нейросеть переведет каждое слово по отдельности, и получится бессвязная «каша». Рекуррентная сможет учесть контекст и перевести, например, apple tree не как «яблоко дерево», а как «яблоня».

наиболее распространенных алгоритма обучения нейронных сетей

Наши данные могут быть зашумлены, поэтому нельзя считать, что самая лучшая модель задается кривой, которая в точности проходит через все имеющиеся точки. В традиционном моделировании (например, линейном моделировании) можно алгоритмически определить конфигурацию модели, дающую абсолютный минимум для указанной ошибки. Для большинства реальных задач бывает достаточно нескольких сотен или тысяч наблюдений. Для особо сложных задач может потребоваться еще большее количество, однако очень редко может встретиться (даже тривиальная) задача, где хватило бы менее сотни наблюдений. Если данных меньше, чем здесь сказано, то на самом деле у Вас недостаточно информации для обучения сети, и лучшее, что Вы можете сделать – это попробовать подогнать к данным некоторую линейную модель.

На каждой эпохе на вход сети поочередно подаются все обучающие наблюдения, выходные значения сети сравниваются с целевыми значениями и вычисляется ошибка. Значение ошибки, а также градиента поверхности ошибок используется для корректировки весов, после чего все действия повторяются. Аналитическими средствами невозможно определить положение глобального минимума на поверхности ошибок, поэтому обучение нейронной сети по сути дела заключается в исследовании поверхности ошибок. Отталкиваясь от случайной начальной конфигурации весов и порогов (т.е. случайно взятой точки на поверхности ошибок), алгоритм обучения постепенно отыскивает глобальный минимум. Как правило, для этого вычисляется градиент (наклон) поверхности ошибок в данной точке, а затем эта информация используется для продвижения вниз по склону. В конце концов алгоритм останавливается в нижней точке, которая может оказаться всего лишь локальным минимумом (а если повезет – глобальным минимумом).